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Abstract. The central problem of devising mathematical models of granular materials is how to define a granular
medium as a continuum. This paper outlines the elements of a theory that could be incorporated in discrete mod-
els such as the Discrete-Element Method, without recourse to a continuum description. It is shown that familiar
concepts from continuum mechanics such as stress and strain can be defined for interacting discrete quantities.
Established concepts for constitutive equations can likewise be applied to discrete quantities. The key problem is
how to define the constitutive response in terms of truncated strain measures that are a practical necessity for
analysis of large granular systems.
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1. Introduction

Mathematicians and physicists who deal with granular media as a continuum must make a
significant departure from traditional models. Attempts to classify granular states in terms
of solid–fluid–gas phases have failed to produce a cogent theory of granular-media behav-
ior [1], for while granular media ostensibly display all three states, for each case physical
phenomena are observed that seem to lie outside of classical behavior. For most materials,
there is a large separation between the micro-scale of atoms and molecules and macro-scale
of measurements. This large separation of scales allows effective averaging on microscopic
effects in time and space to create a continuum. For granular media, the fundamental par-
ticle is itself macroscopic, thus greatly reducing the importance of atomic-scale processes
that are typically assumed to control properties. Thus, a clastic, such as sand, has more in
common with the clutter flowing out of a closet than with the minerals of the rock from
which it is derived. Although granular media might display the distinct states of solid, fluid,
and gas, it is difficult to apply traditional continuum descriptions of these phases. The pres-
sure dependence that controls dissipation in granular solids gives rise to profound mathe-
matical difficulties in continuum formulations for stress analysis and wave propagation [2].
Flowing sand exhibits complex dynamic behavior not described by a Naiver–Stokes equation.
Shear is not resisted by a simple viscosity, but by a combination of rate-independent pro-
cesses including dilation, friction, and size separation. At variance to a gas, particle collisions
are inelastic. In a gas-like state, granular media displays clustering, with formation of tran-
sient structures of particle chains. None of these features can be accommodated easily into
a continuum-mechanics framework by simple readjustments of classical relationships of elas-
ticity, plasticity, fluid mechanics, or gas dynamics. To understand particles as a “medium”,
it is necessary to build a theory from a particle-scale level in much the same manner that
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thermodynamics was developed in the late 19th century. This paper draws attention to key
aspects to modeling granular media as a continuum solid.

The discrete-element method (DEM) introduced by Cundal and Strack [3] provides a vir-
tual laboratory for the study of granular physics by which it is possible to obtain measure-
ments from simulations that would otherwise be impossible from physical experiments. In the
absence of measurements made at the scale of supposed micro-mechanical mechanisms, the
theories are essentially phenomenological. With the DEM, particle-scale theories become par-
ticularly compelling because they can be built on detailed measurement of deformations and
forces at the particle scale. However, most theoretical efforts are couched in terms of contin-
uum mechanics with the expressed goal of devising an equivalent continuum to represent the
granular medium. An example is the procedure of Chang and Liao [4,5] where the discrete
particle translation and rotation are “driven” by continuum motions. By application of the
virtual work principle, continuum stress variables that are conjugate to the deformation vari-
ables can be obtained.

The motivation of continuumization granular for medium is reduction of the degrees of
freedom that must be dealt with using a DEM approach. A DEM simulation is practically
limited to a few million particles, which is equivalent to a handful of sand. Thus, to apply
DEM to a prototype-scale problem typically requires use of oversized particles, which intro-
duces scaling errors in the solution. By devising a constitutive equation of the equivalent
medium, one can presumably employ a numerical solution to the partial differential equa-
tions that result from the continuumization process. However, at the particle scale, granular
media do not behave as continua. In many problems, it is found that the kinematical free-
dom found in the DEM is a major part of the physics and that even a crude particle model
can yield realistic results nearly impossible to obtain with a continuum-based approach [6,7].
In addition, the equivalent continuum response is not simple. As a minimum, the constitutive
response of the equivalent continuum must contain higher-order terms to avoid mathematical
ill-posedness inherent in frictional media. One might ask if the continuum description aids in
making analysis of granular media tractable, or does it add a layer of abstraction that hinders
progress.

The contribution of this paper to the growing discussion of granular continua is to pro-
pose an alternative tack by laying groundwork for analyses based on DEM. The question of
continuumization is addressed by asking whether an equivalentcontinuum is in fact required.
It is shown that the concepts of stress and strain can be conceived without the assump-
tion of a continuum. Additionally, it is argued that plasticity effects caused by particle slip
become more clear in a discrete medium because the oxymoronic notion of non-affine con-
tinuum motion is unnecessary. Thus, the principal tools needed to devise a mechanical the-
ory of particulate media are provided. It is proposed that a fruitful avenue of research might
be the behavior of coarsened DEM systems, including convergence properties of simulated
granular media and averaged inter-particle contact laws that provide the sought-for equivalent
behavior.

1.1. Notation

This paper employees two types of notation. When expressions contain subscripts, the stan-
dard indices notation of continuum mechanics is used. Tensor components are indicated by
subscripts and repeated subscripts indicate summation. The identity tensor is signified as δij
and eijk is the permutation symbol. The superscript p signifies a quantity associated with a
particle and superscript c signifies a quantity associated with a contact between two parti-
cles. Summation is not implied on repeated superscripts, but instead is explicitly indicated by
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Figure 1. Kinematics of contact by a particle pair.

a summation symbol. The operation | · | is defined as |f| ≡ √
fifi . Partial differentiation is

denoted by ∇i (·) ≡ �(·)/�xi .
In Section 4 a matrix notation is adopted to simplify the presentation of generalized stress

and strain. The matrix operations are presented in the standard notation of linear algebra.
The definitions of the matrices are given in Appendix A.

2. The discrete-element method

The discrete-element method provides a computational tool to study particulates without
introducing the complications of a continuum theory. In DEM, the particles are treated as
distinct interacting bodies. Interactions between particles are described by contact laws that
define forces and moments created by relative motions of the particles. The motion of each
particle that results from the net forces and moments are obtained by integrating Newton’s
laws. Thus, the particles are not treated as a medium. Rather, the medium behavior emerges
from the interactions of the particles comprising the assemblage. The emergent behavior of
the group is governed by relatively simple physical laws that obviate the need for complicated
constitutive relationships [8].

The interaction (or contact) forces arise from relative motion between contacting particles.
As shown in Figure 1, the motion of each individual particle is described by the velocity of
the particle center and the rotation about the center. The branch vector between particle cen-
ters, xAi − xBi , is also the difference between the respective radii vectors that link the parti-
cle centers to the contact rAi − rBi . With this nomenclature, the relative motion at contact c
between particles A and B is given by

�̇ci = u̇Ai − u̇Bi + eijk
(
rAj θ̇

A
k − rBj θ̇Bk

)
. (1)

Under rigid-body motion there is no relative motion at any contacts. Rigid-body translation
consists of uAi = uBi , with θ̇Ak = θ̇Bk = 0 for all particle pairs. Rigid-body rotation couples the
particle rotation to the rotation of the particle assemblage. In this case, θ̇Ak = θ̇Bk = �k, where
�k is the rotation common to all points in the granular domain. For rigid body rotation
therefore,

u̇Ai − u̇Bi =−eijk
(
rAj − rBj

)
�̇k. (2)
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In three dimensions, there are three sets of rigid-body translations and three sets of rigid-body
rotations. As will be discussed more precisely, the contact slip is equivalent to deformation in
the system whereas the contact force is equivalent to stress.

3. Continuumization

The term continuumization refers to the process of representing a medium composed of indi-
vidual discrete particles as a continuum having equivalent mechanical properties. This process
is distinguished from more commonly used homogenization by recognition that a continuum
implies a smoothness of motion with a preservation of connectedness not possessed by the
granular media. Generally, the smoothness is imparted on the average motions of the par-
ticles, where the average is based on some representative elementary volume (REV). Many
schemes have been proposed for finding an equivalent continuum. Chang and Liao [4], and
more recently Tordesillas and Walsh [9] have tied particle motions to a smooth velocity using
the virtual-work principle. Bardet and Vardoulakis [10] employed a similar method to eluci-
date the issue of non-symmetric stress tensor in Cosserat media. Bagi [11,12] considered the
equilibrium of locally defined volumes obtained from Voronoi tessellation on particle centers.
Kruyt [13] inspected graph properties of assemblages to define strain and stress variables.

In fact, there are two hierarchies of the continuum. The most basic concept of the con-
tinuum is statistically based in which the REV is chosen such that the fluctuation of the vol-
umetric average is small. In this case, the REV acts as a smoother allowing discrete fields to
be modeled as continuous. At the next level, deformation is viewed as affine mapping from
some initial state to a final deformed state. Discontinuities can arise in finite number, which
are dealt with through appropriate jump conditions. Ubiquitous discontinuities, such as slip,
are sub-REV scale features and must be dealt with through abstractions such as internal vari-
ables that are effective mathematically but conceptually opaque.

This section deals with the first notion of the continuum. Averaging is performed on the
governing equations imposing the momentum balance at the REV scale. The averaged equi-
librium of the sampled volume is expressed in terms of stress which is derived from the aver-
aging process. It is not assumed a priori that motions are affine. Rather, deformation rate is
measured in terms of quantities that are thermodynamic conjugates to the stress. The sam-
pled volume is said to be undergoing rigid-body motion if all relative motions among contacts
are zero. The rigid-body motion have a null projection onto the space of deformations, which
in effect, define those deformations. The projection of rigid-body motions onto the particle
forces give rise to the equilibrium relationships for the sampled volume.

3.1. Properties of the average

For some function or operator f defined in the discrete medium contained within domain �,
the average f̄ of that quantity is defined at a point xi ∈ � as

f̄ (xi)=
∫

�

φ(xi −x′
i;xi)f (x′

i )dx
′
i . (3)

The present analysis considers an infinite domain to avoid influence of boundary terms. We
specify that φ(xi − x′

i;xi) = φ(xi − x′
i ) where φ(xi − x′

i ) = 0 as |xi − x′
i | → ∞. Specifically, φ is

assumed to have compact support, thus allowing a finite sampling volume V ∈ �. With these
restrictions it is necessary only that the integral of the weighting function over its range satisfy

∫

�

φ(xi −x′
i )dx

′
i =

∫

V

φ(xi −x′
i )dx

′
i =1. (4)
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3.2. Weak equilibrium statement

The sampled space is composed of Np particles, each with density ρs and volume V p, accel-
erating at api . Interactions among particles occur at contacts through forces, f ci and moments
mci . For a typical particle, p, having N

p
c contacts, labeled c ∈ N

p
c , conservation of linear

momentum requires

N
p
c∑
c

f ci =V pρsapi . (5)

Each particle likewise rotates with acceleration ωpk , with rotational inertia I . For conservation
of rotational momentum,

N
p
c∑
c

(
eijkr

c
j f

c
i +mck

)
=ρsIωpk , (6)

where rcj is the vector that connects the contact with the rotational center. Equations (5) and
(6) must be satisfied for each particle within the domain. We wish to describe the equilibrium
over the scale of the sampled volume as a weak form of the particle-scale conservation equa-
tions. That is, the weak form of the conservation statements requires that these statements are
true when averaged via Equation (3). These averages are approximately

Np∑
p

φp
N
p
c∑
c

f ci =
Np∑
p

φpV pρsa
p
i (7)

and

Np∑
p

φp
N
p
c∑
c

eijkr
c
j f

c
i =

Np∑
p

φpρsIω
p
k . (8)

3.3. Linear momentum

The process of averaging removes the spatial dependence on the particle quantities, such that
the contact forces become statistical properties of the point for which the average is made.
Accordingly, the summations on the left-hand side of in Equation (7) can be written as two
summations over contacts within the sampling domain. The first summation is in terms of
internal contacts which involve two particles. The second is for contacts at the domain bound-
ary. For the internal contacts the contact force for respective particles A and B must satisfy
f Aci = −f Bci = f ci , thus

NI∑
c

(
φA−φB

)
f ci +

NE∑
c

φAf Aci =
Np∑
p

φpV pρsa
p
i , (9)

where the sum over the external contacts is zero owing to the prescribed properties of φ.
Using the first term of the Taylor expansion for φ, the weighting can be applied at the con-
tacts

NI∑
c

∇jφc
(
rAcj − rBcj

)
f ci =

Np∑
p

φpV pρsa
p
i , (10)

where φc ≡ φ(xi − xci ), xi − xci being the coordinate of the contact relative to the sampling
point. The weighting function, φc is the only function of xi in the summation.
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3.4. Continuum stress

Within the domain the averaged linear momentum can be expressed as

∇j σ ij =ρai,

where

σ ij =
NI∑
c

φc
(
rAcj − rBcj

)
f ci . (11)

In the event that mineral density ρs is the same for all grains and the acceleration is constant

ρai = ρ̄ āi ,

where

ρ̄=ρs
Np∑
p

φpV p.

The summed quantity is the weighted integral over the solid volume and is the fraction of
the sampled volume occupied by the solid phase. The density of that phase is ρs . The mean
density ρ̄ is the mass per total volume commonly referred to in soil mechanics as the total
density.

3.5. Rotational momentum

Similar to the equation of linear momentum, the balance of rotational momentum can be
written in the weak form to produce the counterpart of Equation (9)

NI∑
c

∇lφc
(
eijk

(
rAcl rAcj − rBcl rBcj

)
f ci +mckrl

)
+
NE∑
c

∇lφc
(
eijkr

Ac
l rAcj f ci +mckrl

)

+
NI∑
c

φceijk

(
rAcj − rBcj

)
f ci +

NE∑
c

φceijkr
Ac
j f ci =

Np∑
p

φpρsIω
p
k . (12)

Similar to Equation (11), the continuum expression can be written as

∇lµkl + eijkσ ij =ρsIωpk ,

where the µkl is a coupled stress defined by

µkl =
NI∑
c

φc
(
eijk

(
rAcl rAcj − rBcl rBcj

)
f ci +mckrl

)
. (13)

Note that in the absence of contact couples, mck, the coupled stress arises entirely from con-
tact forces. In general the continuum stress σ ij is not symmetric in the presence of a gradi-
ent in µkl even if the contact moments are zero. The contribution of the contact forces to
the asymmetry is a result of the resistance of the finite sampling volume to resist flexure-like
deformation modes.
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3.6. Work on unbalanced rotational forces

The presence of the moment gradient term leaves an unbalanced component in the moments
created by the contact forces about a common center given in Equation (12). This moment
does work against the rigid body rotation rate �k as given by Wr

Ẇr =
NI∑
c

φceijk

(
rAcj − rBcj

)
f ci �k. (14)

3.7. Power relationship

The deformation rate of the continuum is described by Dij , the symmetric part of the defor-
mation tensor, �k, the rotation of the sampling volume, and φ̇kl the rate of curvature. The
deformation and curvature are linked to their respective particle quantities through a power
balance whereby the work performed by the stress variables and their conjugate deformation
variables is equal to that of contact forces and their conjugate contact motions,

∫

V

(
Dijσ ij +�keijkσ ij + φ̇klµkl

)
dV =

Nc∑
c

f ci

[
�uABi + eijk

(
rAj ω

A
k − rBj ωBk

)]
+Wr. (15)

In view of Equations (11), (13), and (14)

NI∑
c

φcf ci

(
rAj − rBj

) (
Dij + eijk�k

)+
NI∑
c

φcf ci eijk

(
rAl r

A
j − rBl rBj

)
φ̇kl

=
Nc∑
c

f ci

[
�uABi + eijk

(
rAj ω

A
k − rBj ωBk

)]
+Wr. (16)

We immediately conclude that Wr cancels the work term associated with the motion eijk�k

on the left-hand side. The equality is satisfied for the particular case where

u̇ABi + eijk
(
rAj ω

A
k − rBj ωBk

)
=φc

(
Dij

(
rAj − rBj

)
+ eijk

(
rAl r

A
j − rBl rBj

)
φ̇kl

)
. (17)

By this procedure the particle centers are forced to follow the affine motion of the continuum,
an obviously crude restriction if the constitutive relationships are to be built from the parti-
cle contact laws. The restriction in motion is the result of attempting to describe the many
degrees of freedom of the finite sampling volume by the limited degrees of freedom repre-
sented by the deformation and curvature. This restriction can only be removed by including
higher-order terms in the description of deformation. Another problem with Equation (17) is
that the estimation of Dij and φ̇kl from the motions of the particles requires an inversion of
Equation (17). Both issues will be addressed from a more generalized conception of stress and
strain.

4. Generalized stress and strain

Consider an assemblage of particles for which we wish to have measures of stress, σ , and
strain, ε. The forces in the assemblage consist of contact forces between particles and external
forces acting at the boundary of the sampling volume or as body forces. Whereas each particle
has six degrees of freedom, the sampled volume has six Np degrees of freedom, NR of which
are rigid-body motions that involve no relative movement between particles. The strain must
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span a space of M = N−NR to completely capture all modes possible for the volume. Conju-
gate to this strain there are M generalized stress quantities. The task at hand is to define the
operator that links the particle motion to the generalized strain and the forces to the gener-
alized stress.

The translation and rotation of each particle is assigned to a generalized motion u, which
has a conjugate force and moment denoted as the generalized force f (See Appendix A). The
force f is the vector of forces acting at the particle centers. These forces are the sum for each
particle of the contact forces and body forces. As implied by the principle of virtual work, the
conjugate pair f and u̇ should perform the same work as the conjugate σ and ε̇. Accordingly,
the power balance is given by

fT u̇ =σT ε̇. (18)

Similarly, the contact forces, fc and the conjugate contact motion, �̇c should produce the
same virtual work as σ and ε̇.

fTc �̇c=σT ε̇. (19)

This equivalence is the result of the fact that all mechanism of storing or dissipating energy
are assumed to act at the contacts. (While this is a good approximation for the elastic pro-
cesses, it is a fiction for the dissipative processes as is discussed in more detail in the section
on internal variables.) The relationship between the particle motion and the contact motion
of Equation (1) can be constructed in matrix form placing the relationships for each contact
in the appropriate columns and rows of M

�̇c=Mu̇. (20)

By construction of M, the relative motion between all contacts is zero for rigid-body motion.
The rigid-body motions are known up to multiplicative constants. The direction vectors for
the rigid body motions can be stored in the matrix m, which constitute the null space of the
operator M,

Mm =0. (21)

By the virtual work principle, the equilibrium relationship is given by

fTm =0. (22)

The strain is a measure of relative movement among the particles, which is collectively per-
ceived as the deformation of the assemblage. The strain rate is a linear transformation of the
motion, u̇, given by Equation (23).

ε̇=Bu̇. (23)

The null space of the operator B is given by the rigid-body motion, m, as in Equation (21)1

Bm =0. (24)

The relationship between f and σ immediately follows by substitution of Equation (23) in
Equation (18).

f =BT σ. (25)

1The operator B must also satisfy the correct scale dependency. For example, in the particular case
where B is a gradient operator, Bx = I, where I is the identity matrix.
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Similarly, in view of Equations (18) and (19), the total force can be related to the contact
force by

f =MT fc. (26)

Therefore, the distribution matrix, M, and the strain-displacement matrix, B, are equivalent
in purpose. Further, the contact conjugate pairs (fc, �̇c) and stress (σ, ε̇) should be directly
related. To show this, note that the rank of B is N −NR by construction, thus there exists a
right inverse

BAx =x. (27)

It follows immediately that the stress is given in terms of the contact forces

σ =HT fc, (28)

where

H =MA. (29)

Substitute Equation (28) in the power balance, Equation (19), to get

�̇c=Hε̇. (30)

Thus, the stress and strain are equivalent to the contact force and displacement, respec-
tively. The essential difference between the two conjugate pairs is that the contact pair (fc, �̇c)
depends on specifics of the arrangement of grains in the assemblage whereas the pair (σ, ε̇)
can be viewed as measures for the complete ensemble, which take on standardized forms such
as stretch, shear, flexure, and higher-order forms associated with continuum deformation.

4.1. Remark on examples of generalized strain

In Appendix B, examples of generalized strain measures are given for particle assemblages in
two dimensions. It is noted that as more particles are added to the assemblage, additional
modes appear in the definition of generalized strain. Thus, in a finite volume of particles,
motions that describe deformation must satisfy the relationship M = NDOFNp−NR, where M
is the number of deformation modes for the assemblage, NDOF is the number of degrees of
freedom for each particle, NP is the number of particles, and NR is the number of rigid-body
modes for the assemblage. For one-dimensional motion, NR =1; for two-dimensional motion
NR = 3; and for three-dimensional motion NR = 6. The implication to any homogenization
procedure is that it is necessary to either define deformation through higher-order terms, or
to tie the “internal” higher-order modes to lower-order terms. The later choice requires an
approximation that is part of the constitutive response of the assemblage.

4.2. Remark on finite-element stabilization

The construction of the B operator in the example computations of Appendix B is somewhat
contrived because in finding the vectors orthogonal to m to populate B, choices were made to
produce the traditional strain-displacement operators for finite elements. Clearly, other opera-
tors could be constructed from linear combinations of the rows of B. In each case, Equation
(24) would be satisfied. Each definition of B carries with it a definition of stress and its conju-
gate strain. All definitions are equivalent in the sense that one definition can be derived from
the other.
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The procedure for obtaining B is similar to that for suppressing zero-energy modes in
under-integrated finite elements described in [14]. In that case, the zero-energy modes are
deformation modes that are not resisted by internal stresses. The finite elements are stabilized
by determining a set of orthogonal modes to fully span the space. The forces associated with
the added modes are determined from a simple proportionality between the force and defor-
mation. The constant of proportionality is selected as a suitably large number to suppress the
spurious modes and thereby stabilize the element.

4.3. Remark on constitutive response

If the generalized stress and strain concepts were to be employed to develop a continuum
model, the issue of constitutive response for higher modes would become problematic. In con-
trast, building the constitutive response for the particle-scale level is straightforward in view
of the duality between B and M. In the DEM approximation, all work is performed by con-
tact forces giving the work balance in Equation (19). Assuming an elastic contact response

ḟc=K�̇c, (31)

which immediately leads to (for small deformations),

σ̇ =Dε̇, (32)

where

D=HTKH. (33)

This result is similar to relationships by Tordesillas and Walsh [9], if account is taken of
difference in notation.

5. Truncated strain measures

For most micro-mechanical formulations, the measure of strain is restricted to a few terms of
a Taylor expansion centered within the REV. Alternatively, for application to coarsened par-
ticulate systems alluded to in the introduction, only a few representative particles are pres-
ent. In either case, the strain measure is truncated leaving an approximation to the contact
displacement. By casting Equation (17) in matrix form, the strain is projected to the contact
quantities by

˙̄�c=H ˙̄ε, (34)

where the number of degrees of strain degrees of freedom are less than N−NR. Consider the
case where the contact displacements are known, either from a DEM simulation or experi-
ment. The most representative strain is that which minimizes the square of residual

R2 = 1
2
(�̇c−H ˙̄ε)T (�̇c−H ˙̄ε), (35)

which leads to the least-squares approximation

˙̄ε= (HT
H)−1H

T
�̇c. (36)

The strain can be expressed in terms of the particle motions by

˙̄ε= (HT
H)−1H

T
Mu̇. (37)
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The stress is given by

σ̄ =H
T

fc. (38)

Note that an implication of Equation (38) is that H can be obtained by converting Equations
(11) and (13) into matrix form. Thus, given the averaged stress in terms of particle-scale quan-
tities, the correct definition of the conjugate strain rate, in terms of particle-scale quantities,
follows immediately via Equation (36).

5.1. Elastic constitutive response

The form of the relationships for stress and strain are analogous to Equations (23) and (28)
and lead to a constitutive relationship that is similar to Equation (32), σ̄ = D̄ε̄. It is well
known that the resulting stress–strain response is too stiff compared to that measured for the
assemblage [4]. The stiff response is the result of the constraint imposed on the displacements
and it is expected that as more terms are added to the strain, the response will match the
assemblage response better. The situation can be understood by considering Equation (33) in
a partitioned form.

[
Duu Dul

DT
ul Dll

]{ ˙̄ε
ε̇′

}
=

{ ˙̄σ
σ̇ ′

}
. (39)

The barred quantities correspond to those strain terms included in the truncated strain. The
primed quantities are the additional terms required to span the space. Note especially that in
general D̄ �= Duu. Possible approaches to account for the truncated terms are considered as
the following three cases:

5.1.1. Case 1: ε̇′ = 0
This case corresponds to projecting the truncated strain measure (e.g. Equation (17)) such that

Duu
˙̄ε= ˙̄σ , (40)

with the internal stress terms given as

σ̇ ′ =DT
ul

˙̄ε. (41)

This case corresponds physically to an interlocked structure that does not allow significant
inter-grain motion.

5.1.2. Case 2: σ̇ ′ = 0
In this case, the internal stress terms are absent and the higher-order modes of deformation
are not resisted. The constitutive equation for this case would be

(Duu−DulD−1
ll DT

ul)
˙̄ε= ˙̄σ , (42)

with

ε̇′ =−D−1
ll DT

ul
˙̄ε. (43)

The higher-order strains become linear functions of the truncated strains. This case can be
readily shown to result from minimizing ε̇TDε̇ with respect to ε̇′, which corresponds physi-
cally to a relaxed structure where granular motion is essentially not resisted.



242 J.F. Peters

5.1.3. Case 3: ε̇′ �= 0 and σ̇ ′ �= 0
The general stiffness relationship is

(Duu−DulD−1
ll DT

ul)
˙̄ε= ˙̄σ −DulD−1

ll σ̇
′, (44)

with

ε̇′ =D−1
ll (σ̇

′ −DT
ul

˙̄ε). (45)

To close the system of equations a relationship is required to define either σ̇ ′ or ε̇′. It is seen
that in general, the Case 2, where ε̇′ is a linear function of ˙̄ε, corresponds to the fully relaxed
case, where σ̇ ′ = 0, whereas Case 1, where σ̇ ′ is a linear function of ˙̄σ , corresponds to the
fully locked where ε̇′ = 0. The evolution of the structure from one case to another is a dissi-
pative process implying an additional constitutive equation of the type

σ̇ ′ =A ˙̄ε−ασ ′.

6. Internal variables

In the preceding discussion, a process is proposed in which the granular structure transi-
tions from a completely locked assemblage, which is entirely elastic, to a completely relaxed
structure where particle motions are unrestricted. For elastic deformation the topology of the
assemblage remains constant such that contacts are not broken nor are new contacts made.
Thus, the assemblage can be viewed as an elastic system in which the state of the system
is determined entirely by the strain. From the standpoint of solid mechanics, the particulate
medium could be homogenized into an elastic solid described by a higher-order strain theory.
In the more general case of evolving structure, the state of the system is no longer described
completely by the strain because the processes of contact creation and breakage are irrevers-
ible, a fact that must be considered for describing any homogenized continuum description of
the medium. In continuum mechanics, such non-affine motions are addressed through inter-
nal variables, which account for the irreversible mechanisms within the medium. Internal var-
iable theory provides the formal framework for irreversibility such that it is possible to devise
models for materials undergoing irreversible changes in internal structure without violating
the principles of thermodynamics (e.g. [15]). However, the theory does not describe specifically
what physical process the internal variables represent, leaving their meaning in phenomenolog-
ical models somewhat murky. Some authors have related internal variables in plasticity mod-
els to slips or diffusion of dislocations in some limited crystalline systems, but models that
are more comprehensive generally express their meaning with vague reference to internal pro-
cesses. More notable is the effort to relate the internal variables to those additional motions
that are not captured by the strain. However, as emphasized by Valanis and Lee [16], such
deformation must include non-affine motion to qualify as an internal variable. It is implied
that such motion is accompanied by changes in the material topology, a process more easily
visualized at the particle scale.

A theory that is built up from a particle-scale model has the advantage that the mean-
ing of the internal variable is clear in the sense that internal variables can be computed from
particle-scale measurement, whether based on experiments or simulation. The most obvious
notion of an internal variable is that of contact slip. Generally, a Coulomb friction law is
applied at the contact such that the contact motion includes a slip giving a contact law

f ci =Kc
ij (�

c
j − δcj ), (46)
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where δci is the component of contact motion that represents slip. The evolution law for the
slip is

δ̇ci =
{

0 for |τ ci |<µσc,
�̇ci for |τ ci |=µσc,

(47)

where σc = f ci n
c
i , τ

c
i = f ci −f cj ncjnci , and µ is the Coulomb friction coefficient. The combined

result of Equations (46) and (47) ensure that |τ ci | can never exceed µσc.
In reality, slip is not this simple. In a time step, a contact can be created or lost, which

at the macro level has the effect of slip. Consider a finite time increment �t = t1 − to, dur-
ing which a particle makes contact and gives rise to a contact force f ci , beginning at tc. The
total motion of the particles making the contact is �̇ci �t . Of this total motion, only the part
�̇ci (tc− to) actually contributes to the contact force. That is, the average rate is

ḟ ci =Kc
ij

(
�̇cj�t− �̇cj (tc− to)

)
/�t (48)

=Kc
ij

(
�̇cj − δ̇cj

)

A simular argument can be made for contacts lost over a time step.
Within the REV many contacts are formed and lost over a time step. These contacts can

be binned based on the contact orientation. Each orientation is represented by six rows of
matrix H (see Appendix A). Thus, �̇ci = Hc

ikε̇k. The slip component can similarly be expressed
in terms of a macroscopic variable by δ̇ci = Hc

ij qj . The portion of the stress, denoted Qc
i that

arises from a particular contact direction is Qc
i = Hc

kif
c
k . The macroscopic law is

Q̇c
i =Hc

kiH
c
jlK

c
kj

(
ε̇l − q̇cl

)
, (49)

with

σi =
∑
c

Qc
i . (50)

A key observation from Equation (49) is that qcj is a function of the contact direction
implying that no single of qcj can describe slips for all contact directions. Thus, the complete
constitutive law involves multiple internal variables.

Equations (49) and (50) are equivalent to those produced by an internal variable law based
on a Helmholtz free energy ψ(ε,qc) = ∑

c ψ
c(ε,qc) where

ψc=Dcij (εi −qci )(εj −qcj ), (51)

with

σi = �ψ
�εi
, (52)

and

Qc
i =− �ψ

�qci
. (53)

The evolution of qc is an object for research. In any case, the evolution law must satisfy
the second law of thermodynamics which implies

−q̇ci
�ψ
�qci

≥0. (54)
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For tangential slip, Equation (47) guarantees that inequality (54) is satisfied. For normal
motion at contacts, the situation is more complicated. In DEM simulations, it is necessary to
apply some sort of damping to the normal contact law. Physically, a hysteretic law is reason-
able, because it maintains rate-independence of the dissipation, although in practice some vis-
cous damping is also needed. These mechanism of energy dissipation obey the inequality (54)
as well. The challenge is to make particle-scale measurements that clearly relate these mech-
anisms of particle interactions to the internal variables. The work of Zhang and Raueszahn
[17] is notable in this regard for granular flows.

It should be recognized that Hc evolves in response to both elastic and inelastic changes to
the particulate structure. Its evolution must conform with the second law given by the inequal-
ity

− �ψ
�Hc

Ḣc≥0. (55)

That is, changes in Hc due to changes in internal structure cannot increase the free energy.

7. Conclusions

This paper began with a demonstration that continuum equations for the conservation of
linear and rotational momentum can obtained from spatial averaging of the particle-scale
momentum balance equations to produce the equations of a Cosserat medium. Two points
emerged from this effort. First, the stress quantities need not be defined as averages of any
local stress but arise naturally as result of spatial averaging of the equilibrium equations. Sec-
ond, simple projections of conjugate deformation measures cannot be used in micro-scale con-
stitutive relationships because such average motions are overly restricted. It is later shown that
either higher-order deformation measures must be introduced, or the average motion as part
of the constitutive relationship must drive particle-scale motions. In arriving at that conclu-
sion, it is first shown that the concepts of stress and strain can be generalized to encompass
the discrete quantities at the particle scale without recourse to the continuum concept. These
generalized stresses and strains are shown to be equivalent to motions and forces at contacts,
which allows deriving macro-scale constitutive equations from particle-scale relationship. The
deformation conjugates to the averaged stress tensors are observed to be truncated forms of
the generalized stress vector. The commonly used least-squares procedure is shown to provide
strain measures that are conjugate to the averaged stress measures. Significantly, it is shown
that the general concepts associated with constitutive theory for continua can be employed
without the specific use of the continuum concept. It is concluded that a coarsened DEM
could accordingly be developed.

Appendix A. Matrix nomenclature

The matrix nomenclature is introduced to make the general structure of the theory more
clear. The displacement of each particle center is described by six degrees of freedom,
(ux, uy, uz, θx, θy, θz), which are arranged in u matrix as follows:

uT = [(u1
x, u

2
x, . . . , u

Np
x ), (u1

y, u
2
y, . . . , u

Np
y ), (u1

z, u
2
z, . . . , u

Np
z ),

(θ1
x , θ

2
x , . . . , θ

NP

x )(θ1
y , θ

2
y , . . . , θ

NP

y )(θ1
z , θ

2
z , . . . , θ

NP

z )] (A.1)
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The conjugate force vector f is arranged as (fx, fy, fz,mx,my,mz), so that

fT = [(f 1
x , f

2
x , . . . , f

Np
x ), (f 1

y , f
2
y , . . . , f

Np
y ), (f 1

z , f
2
z , . . . , f

Np
z ),

(m1
x,m

2
x, . . . ,m

NP

x )(m1
y,m

2
y, . . . ,m

NP

y )(m1
z,m

2
z, . . . ,m

NP

z )] (A.2)

Therefore, the quantity fT u is the sum of the work for the particle assemblage.
The stress and strain are simply

σT = [σ1, σ2, . . . , σN ] (A.3)

and

εT = [ε1, ε2, . . . , εN ]. (A.4)

The contact quantities consist of (�x,�y,�z,x,y,z), where i is the difference in rota-
tion between contacting particles. These are grouped in �c in accordance with the contact
number. The forces conjugate to the contact degree of freedom are (f cx , f

c
y , f

c
z , m

c
x,m

c
y,m

c
z)

and are likewise arranged in accordance with the contact number. The matrix M is con-
structed using the relationships between particle motion and contact motion,

�ci =uAi −uBi + eijk(rAj θ̇Ak − rBj θ̇Bk ). (A.5)

and

i = θA− θB. (A.6)

The rows of M correspond to the components of �c and fc, whereas the columns correspond
to the ordering of u and f . For example, for �c = Mu,




...

�x

�y

�z

x

y

z
...




=




. . . 1 0 0 . . . −1 0 0 . . . 0 −rz ry . . . 0 ry −ry . . .

. . . 0 1 0 . . . 0 −1 0 . . . rz 0 −rx . . . −rz 0 rx . . .

. . . 0 0 1 . . . 0 0 −1 . . . −ry rx 0 . . . ry −rx 0 . . .

. . . 0 0 0 . . . 0 0 0 . . . 1 0 0 . . . −1 0 0 . . .

. . . 0 0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 −1 0 . . .

. . . 0 0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0 −1 . . .



. (A.7)

The H matrix is arranged similarly except that the columns correspond to ordering of the
strain components. The rigid body motion is specified up to an arbitrary constant and is given
by

Translation, θ1 = θ2 = θ3 =0
x=1
y=1
z=1
Rotation,
ui = eij1xj , θ1 =1, θ2 = θ3 =0
ui = eij2xj , θ1 =0, θ2 =1, θ3 =0
ui = eij3xj , θ1 =0, θ2 =0, θ3 =1

(A.8)



246 J.F. Peters

The m matrix is constructed such that its six rows constitute these rigid-body motions and
the columns correspond to the ordering used for u and f .

m =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −z y 1 0 0

−z 0 x 0 1 0
y −x 0 0 0 1




(A.9)

where I is the identity matrix and

1= [1,1,1, . . . ,1], (A.10)

0 = [0,0,0, . . . ,0], (A.11)

x = [x1, x2, x3, . . . , xNp ], (A.12)

y = [y1, y2, y3, . . . , yNp ], (A.13)

z = [z1, z2, z3, . . . , zNp ]. (A.14)

Appendix B. Example of constructing B

B.1. General case

Construction of the B matrix amounts to filling out the m matrix given in Equation A.9 with
orthogonal rows. Noting the structure of m, the process is facilitated by constructing B from
sub-matrices as shown in Figure B1.

The properties of the sub-matrices follow from the orthogonality requirement, specifically,
Li · 1 = Ni · 1 = 0, and Li · xj = Ni · xj = 0 for i �= j . The sub-matrices are scaled such that
Li ·xi = Ni ·xi = 1 The sub-matrices Ji must satisfy the simpler orthogonality relationship Ji ·
1 = 0. The sub-matrices Mi are computed to satisfy the relationship

Nx ·xx +Ny ·xy +Mz ·1=0,

for all permutations of x, y, and z.
The construction of B are given for specific cases in the sections that follow.

B.2. Three-particle assemblage

Consider an example of a three-particle assemblage moving within a plane. The rigid-body
motions using the format of Equation (A.9), are

m =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
y1 y2 y2 −x1 −x2 −x3 1 1 1


 . (B.1)

The first row represent uniform translation in the x-direction, the second represents uniform
translation in the y-direction, and the third is rigid-body motion in which the particle rota-
tions are equal to the rigid-body rotation of the assemblage about the origin.

It is useful to consider the reduced form shown in Figure B2 that corresponds to two-
dimensional motion in the x-y plane. The columns corresponding to translation in the z-
direction and rotations about the x and y axes are removed. Accordingly, rows corresponding
to gradients of those degrees of freedom are removed.
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m
- -
B


=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −z y 1 0 0

−z 0 x 0 1 0
y −x 0 0 0 1

- - - - - - - - - - - -
Lx 0 0 0 0 0
0 Ly 0 0 0 0
0 0 Lz 0 0 0
0 0 0 Jx 0 0
0 0 0 0 Jy 0
0 0 0 0 0 Jz

Ny Nx 0 0 0 0
0 Nz Ny 0 0 0

Nz 0 Nx 0 0 0
0 0 0 Jy 0 0
0 0 0 Jz 0 0
0 0 0 0 Jx 0
0 0 0 0 Jz 0
0 0 0 0 0 Jy
0 0 0 0 0 Jx

Ny −Nx 0 0 0 Mz

0 −Nz Ny Mx 0 0
Nz 0 −Nx 0 My 0




Figure B1. General form of B.




m
−−−

B


=




1 0 0
0 1 0
y −x 1

−−− −−− −−−
Lx 0 0
0 Ly 0

Ny Nx 0
0 0 Jy
0 0 Jx

Ny −Nx Mz




Figure B2. Form of B for deformation in x–y plane.

The number of rows of the B matrix is given by M = NDOFNp−NR, for two-dimensional
motion, NDOF = 3 and NR = 3. Thus, M = 6 implying that each sub-matrix contains one row.
Thus we set Li = Ni = Ji for all i. The Lx sub-matrix is orthogonal to (1,1,1) and (y1, y2, y3)

and can be computed from the cross product between these two vectors. Denoting the cross
product as L∗

x , then Lx = aL∗
x , where a = 1/(L∗

x · x). The sub-matrix Ly can be found in a
similar manner. It is easily verified by direct substitution that L∗

x ·x = L∗
y ·y.

B=a




y32 y13 y21 0 0 0 0 0 0
0 0 0 x23 x31 x12 0 0 0
x23 x31 x12 y32 y13 y21 0 0 0
0 0 0 0 0 0 y31 y13 y21

0 0 0 0 0 0 x23 x31 x12

x23 x31 x12 y23 y31 y12 Mθ Mθ Mθ



, (B.2)
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where yIJ = yI −yJ , xIJ = xI −xJ , and The sub-matrix Mθ are equal and are given by

Mθ =2(y32x1 +y13x2 +y21x3).

The matrix corresponds to the strain-displacement matrix for a constant strain triangular
finite element with terms included for the Cosserat rotations. The factor a is equal to twice
the area defined by the line segments connecting the three particle centers. The first two rows
of B correspond to the gradient of velocity in the x- and y-directions, respectively. The third
row represents shear. The fourth and fifth rows correspond to the gradients of rotations in
the x- and y-directions, respectively. The sixth row corresponds to the difference between the
rigid body rotation of the assemblage and the average particle rotation.

B.3. Four-particle assemblage

In the case of a four-particle assemblage with two-dimensional motion, the strain operator
would again contain terms for the strains, Cosserat curvatures, and rotations. In this case
Np = 4 requiring that M = 9. Thus, three rows must be added. However, the matrix shown
in Figure B2 remains applicable implying that the sub-matrices contain multiple rows. For
the special case where the particle rotation is not included, the matrix shown in Figure B2
is reduced to three rows with five independent vectors required. Thus, of the three vectors
required, only one is associated with the rotations.

Consider the case of Lx . The possible vectors that meet the orthogonality conditions can
be obtained from a cross product in R4. For any vector, l in R4 that is not parallel with either
1 or y, Lx is given by

Lx =




l2(y4 −y3)+ l3(y2 −y4)+ l4(y3 −y2)

l1(y3 −y4)+ l3(y4 −y1)+ l4(y1 −y3)

l1(y4 −y2)+ l2(y1 −y4)+ l4(y2 −y1)

l1(y2 −y3)+ l2(y3 −y1)+ l3(y1 −y2)



. (B.3)

For any valid assemblage, l = x is can be used to generate Lx . For the particular case of a
square array of particles with x = (−1,1,1,−1) and y = (−1,−1,1,1), Lx is found to be

Lx =
[−1 1 1 −1

−4 4 −4 4

]
. (B.4)

The first row corresponds to a uniform expansion of the particles in the x-direction. The sec-
ond row represents a flexure mode, commonly referred to as an hour-glass mode in the finite-
elements literature. The case for Ly is similar. The additional mode associated with rotation
can be similarly computed by taking the cross product in R4 for the set 1, Lx , and Ly . The
result is a pattern corresponding to the flexure mode.

B.4. Nearest-neighbor configuration

The nearest-neighbor configuration consists of a central particle surrounded by three particles
such that x = (0,−1,1,0) and y = (

√
3/2,0, 0,

√
3). This arrangement is similar to that used

for the micro-mechanical modeling by Tordesillas and Walsh [9]. The relationships for this
four particle assemblage is the same as the preceeding example. The sub-matrix Lx obtained
in this case illustrates the difference made by the coordinate location of the fourth particle.

Lx =



0 −1 1 0

−2
√

3

√
3

2

√
3

2

√
3

2


 . (B.5)
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As for the preceding example, the first row corresponds to a uniform stretch in the x-direc-
tion. However, the second row corresponds to a motion of the central particle relative to the
three surrounding particle, which is quite unlike the flexure modes of the four-corner config-
uration. It is significant that these two modes are orthogonal; the deformation Dij of Equa-
tion (17) provides no information on the magnitude of the second mode. Therefore, this mode
is absent from the micro-mechanical model. Increasing the coordination number (by adding
particles) would bring additional modes that would likewise be unaccounted for in a micro-
mechanical model driven by Dij .
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